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Word Prediction
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• The quiz was ------

• In this course, I want to get a good -----

• Can I make a telephone -----

• My friend has a fast -----

• This is too -------

-------الوقت كالسيف إن لم تقطعه •

-------لا إله إلا أنت سبحانك إني كنت من •



Word Prediction
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• Humans have the ability to predict future words in 

an utterance.

• How?

– Domain knowledge

– Syntactic knowledge

– Lexical knowledge



Word Prediction
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• A useful part of the knowledge is needed to allow Word 

Prediction (guessing the next word).

– Start looking at words in context.

– predict next words in a sequence.

• Word Prediction can be captured using simple statistical 

techniques.

– In particular, we'll rely on the notion of the probability of a 

sequence (e.g., sentence) and the likelihood of words co-

occurring.

• Why word prediction?

– Why would you want to assign a probability to a sentence? or

– Why would you want to predict the next word?



Word Prediction
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• Many applications employ language models for Word 

Prediction.

• Examples:

– Speech recognition

– Handwriting recognition

– Spelling correction

– Machine translation

– Optical character recognition

– Augmentative communication



Word Prediction – Application Example
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• Word Prediction helps in real world spelling errors:

– Mental confusions (cognitive)

• their/they’re/there

• to/too/two

• weather/whether

– Typos

Phrases/sentences with errors Prediction

lave for have lave: lave, leave or love,

have: having or shave

They are leaving in about fifteen minuets to go to her horse. horse: house, minuets: minutes

The study was conducted mainly be John Black. be: by

The design an construction of the system will take … an: and

Hopefully, all with continue smoothly in my absence. with: will

I need to notified the bank of…. notified: notify

He is trying to fine out. fine: find



Word Prediction – Application Example
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• Word Prediction solution to real world spelling errors:

1. Collect a set of common pairs of confusions;

2. Whenever a member of this set is encountered, compute 
the probability of the sentence in which it appears;

3. Substitute the other possibilities and compute the 
probability of the resulting sentence;

4. Choose the higher one.



Statistical Inference
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• Statistical NLP aims to do statistical inference for the field 

of NL.

• Statistical inference consists of taking some data 

(generated in accordance with some unknown probability 

distribution) and then making some inference about this 

distribution.

• An example of statistical inference is the task of language 

modeling (ex. how to predict the next word given the 

previous words)

• In order to do this, we need a model of the language.

• Probability theory helps us finding such model



Probability Theory
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• How likely it is that an A Event (something) will happen.

• Sample space Ω is listing of all possible outcome of an 

experiment.

• Event A is a subset of Ω

• Probability function (or distribution)

• Prior (unconditional) probability is the probability  

before we consider any additional knowledge

 0,1Ω:P 

)(AP



Conditional Probability

10

• Sometimes we have partial knowledge about the 

outcome of an experiment.

• In such cases Conditional Probability applies.

– Suppose we know that event B is true

– The probability that event A is true given the knowledge 

about B is expressed by

)|( BAP



Conditional Probability

11

• Conditionals

• Rearranging

• And also
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Conditional Probability
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• Joint probability of A and B
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Bayes’ Theorem
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• Bayes’ Theorem lets us swap the order of dependence 

between events.

• From Conditional Probability, we saw that 

• Bayes’ Theorem:

P(B)

B)P(A,
B)|P(A 

P(B)
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Bayes’ Theorem
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• We know …

• So, rearranging things …
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Bayes’ Theorem - Example
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• S:stiff neck, M: meningitis

• P(S|M) =0.5       P(M) = 1/50,000       P(S)=1/20

• Someone has stiff neck, should he/she worry?

• Estimate the probability, applying Bayes’ Theorem:
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Chain Rule of Probability
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• The probability of a sequence can be viewed as the 

probability of a conjunctive event.

• For example, the probability of “the clever student” is:

( )P the clever student 



Chain Rule of Probability - Example
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• Based on Conditional Probability:

• Estimating the probability of the conjunctive event: “the student studies”

– “the student”

– “the student studies”
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Chain Rule of Probability
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• The probability of a word sequence is the probability of a conjunctive event.

• The chain rule shows the link between computing the joint probability of a 

sequence and computing the conditional probability of a word given 

previous words.

• Unfortunately, Chain Rule doesn’t seem to be really helpful. Why?

– We don’t know how to compute the exact probability of a word given a long 

sequence of preceding words.

– Language is creative and any particular context might have never occurred before!
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Markov Assumption
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• Markov models are the class of probabilistic models 
that assume that we can predict the probability of some 
future unit without looking too far into the past.

• Thus, the Order of a Markov model is the length of 
immediate prior context.

• The assumption that the probability of a word depends 

only on the previous word is called a Markov

assumption.



N-gram Language Models
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• Language Models (LMs) are models that assign 
probabilities to sequences of words.

• An n-gram is a sequence of words:

– A 2-gram (or bigram) is a two-word sequence of words

• like “please turn”, “turn your”, or ”your homework”.

– A 3-gram (or trigram) is a three-word sequence of words

• like “please turn your”, or “turn your homework”.

• We use n-gram models to estimate the probability of the last 

word of an n-gram given the previous words, and also to assign 

probabilities to entire sequences (probability distribution).



N-grams
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• A simple N-gram model computes P(w | h), the 

probability of a word w given some history h.

– It uses the previous N-1 words to predict the next one:

P(wn | wn -1)

• Dealing with P(<word> | <some prefix>)

• unigrams: P(student)

• bigrams: P(student | honest)

• trigrams: P(student | clever honest)

• quadrigrams: P(student | the clever honest)



N-grams
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• Given a word sequence: w1 w2 w3 ... wn

• Chain rule

– p(w1 w2) = p(w1) p(w2|w1) 

– p(w1 w2 w3) = p(w1) p(w2|w1) p(w3|w1w2) 

– p(w1 w2 w3...wn) = p(w1) p(w2|w1) p(w3|w1w2) p(w4|w1w2w3) ... p(wn|w1...wn-1) 

• Note:

– It’s not easy to collect (meaningful) statistics on p(wn|wn-1wn-2...w1) for all possible 
word sequences

• Bigram approximation

– just look at the previous word only (not all the proceedings words) 

– Markov Assumption: finite length history

– 1st order Markov Model

– p(w1 w2 w3..wn) = p(w1) p(w2|w1) p(w3|w1w2) ...p(wn|w1...wn-3wn-2wn-1)

– p(w1 w2 w3..wn)  p(w1) p(w2|w1) p(w3|w2)…p(wn|wn-1)

• Note:

– p(wn|wn-1) is a lot easier to estimate well than p(wn|w1…wn-1) 



N-grams
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• Given a word sequence: w1 w2 w3 ... wn

• Chain rule

– p(w1 w2) = p(w1) p(w2|w1) 

– p(w1 w2 w3) = p(w1) p(w2|w1) p(w3|w1w2) 

– p(w1 w2 w3...wn) = p(w1) p(w2|w1) p(w3|w1w2) p(w4|w1w2w3) ... p(wn|w1...wn-1) 

• Note:

– It’s not easy to collect (meaningful) statistics on p(wn|wn-1wn-2...w1) for all possible 
word sequences

• Trigram approximation

– just look at the previous two words only (not all the proceedings words) 

– 2nd order Markov Model

– p(w1 w2 w3 w4...wn) = p(w1) p(w2|w1) p(w3|w1w2) p(w4|w1w2w3)...p(wn|w1...wn-3wn-2wn-1)

– p(w1 w2 w3...wn)  p(w1) p(w2|w1) p(w3|w1w2)p(w4|w2w3)...p(wn |wn-2 wn-1) 

• Note:

– p(wn|wn-2wn-1) is a lot easier to estimate well than p(wn|w1…wn-1) but harder than 
p(wn|wn-1 )



N-grams
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• Based on Markov assumption, the general equation for n-gram 

approximation to the conditional probability of the next word in a 

sequence is

• So for each component in the product replace each with its 

approximation (assuming a prefix (Previous words) of N)

• For a bigram grammar

– P(sentence) can be approximated by multiplying all the bigram 

probabilities in the sequence

• P(I want to eat Chinese food) = P(I | <start>) P(want | I) P(to | want) 

P(eat | to) P(Chinese | eat) P(food | Chinese) P(<end> | food)



N-grams
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• How do we estimate the bigram or n-gram probabilities?

• To estimate probabilities, we use a method called Maximum 

Likelihood Estimation or MLE.

– Counting from corpus and normalizing the counts so that they 

lie between 0 and 1
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N-grams
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N-grams - BErkeley Resturant Project (speech) Example
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• BERP bigram counts:

I Want To Eat Chinese Food lunch

I 8 1087 0 13 0 0 0

Want 3 0 786 0 6 8 6

To 3 0 10 860 3 0 12

Eat 0 0 2 0 19 2 52

Chinese 2 0 0 0 0 120 1

Food 19 0 17 0 0 0 0

Lunch 4 0 0 0 0 1 0



N-grams - BErkeley Resturant Project (speech) Example
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• Normalization:  divide each row's counts by appropriate unigram 

counts

• Computing the probability of I I

– P = C(I | I) / C(all I)

– P = 8 / 3437 = .0023

• A bigram grammar is an NxN matrix of probabilities, where N is the 

vocabulary size

I Want To Eat Chinese Food Lunch

3437 1215 3256 938 213 1506 459



N-grams - BErkeley Resturant Project (speech) Example
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N-grams - BErkeley Resturant Project (speech) Example
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• A Bigram 

Grammar 

Fragment 

from BERP



N-grams - BErkeley Resturant Project (speech) Example
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• P(I want to eat British food) = P(I|<start>) P(want|I) P(to|want) 

P(eat|to) P(British|eat) P(food|British) = 

.25*.32*.65*.26*.001*.60 = 0.0000081 

• P(I want to eat Chinese food) = P(I|<start>) P(want|I) P(to|want) 

P(eat|to) P(Chinese|eat) P(food|Chinese) =

.25*.32*.65*.26*.02*.56 = 0.00015

• What can we infer from these statistics?

• Probabilities seem to capture “syntactic” facts and “world 

knowledge” 

– eat is often followed by a NP

– British food is not too popular



N-grams – log probability
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• Check the following probabilities:

– P(I | I) = .0023          I I I I want

– P(I | want) = .0025    I want I want

– P(I | food) = .013       the kind of food I want is ...

• Since probabilities are (by definition) less than or equal to 1, the 

more probabilities we multiply together, the smaller the product 

becomes.

– Multiplying enough n-grams together would result in numerical 

underflow.

– To avoid underflow convert the probabilities to logs and then do 

additions.

– To get the real probability (if you need it) go back to the antilog.



Evaluating Language Models
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• Probabilities come from a training corpus, which is used 

to design the model.

– narrow corpus: probabilities don't generalize

– general corpus:  probabilities don't reflect task or domain

• A separate test corpus is used to evaluate the model, 

typically using standard metrics

– held out test set

– cross validation

– evaluation differences should be statistically significant

• Try preplexity metric (the inverse probability) to evaluate each model.

• The lower the preplexity the better the language model.



34

• Using Shannon visualization technique - choose N-Grams 

according to their probabilities and string them together to 

generate random sentences from different n-gram models.

– Unigrams - Choose a random value between 0 and 1 and print the 

word whose interval includes this chosen value. We continue 

choosing random numbers and generating words until we randomly 

generate the sentence-final token </s>.

– Bigrams: Start with generating bigrams that start with <s> and has w

as the second word. We next chose a random bigram starting with w, 

and so on.

• From BERP:

<s>I     I want     want to     to eat     eat Chinese     Chinese food     food</s>

• Make sure that the training and testing datasets share the same 

genre and dialect.

Evaluating Language Models



Generalization and Zeros
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• A small number of events occur with high frequency

– You can collect reliable statistics on these events with 

relatively small samples

• A large number of events occur with small frequency

– You might have to wait a long time to gather statistics on the 

low frequency events

– Some zeroes are really zeroes

• Meaning that they represent events that can’t or shouldn’t occur

– On the other hand, some zeroes aren’t really zeroes

• They represent low frequency events that simply didn’t occur in the 

corpus



Generalization and Zeros
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• Problem:

– Let’s assume we’re using N-grams.

– How can we assign a probability to a sequence where one of 
the component n-grams has a value of zero?

• i.e. words that could be in our vocabulary, but appear in a test set in an unseen 

context (for example they appear after a word they never appeared after in 

training)

• Solution - Assume all the words are known and have 

been seen.

– Go to a lower order n-gram

– Back off from bigrams to unigrams

– Replace the zero with something else



Smoothing
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• The simplest way to do smoothing is to add one to all the bigram 

counts, before we normalize them into probabilities.

– All the counts that used to be zero will now have a count of 1, the counts of 1 will 

be 2, and so on.

– Justification: They’re just events you haven’t seen yet. If you had seen them you 

would only have seen them once. so make the count equal to 1.

• This algorithm is called Laplace smoothing (or add-one smoothing).

– There are other smoothing algorithms too: Add-k smoothing, Backoff smoothing 

and Kneser-Ney smoothing, but we focus on Laplace smoothing.

Unigram:

Bigram: 



Smoothing – Add-one Smoothing Example (PERP)
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• Unsmoothed bigram counts:

• Unsmoothed bigram probabilities:

2nd word

 I want to eat Chinese food lunch … Total (N) 

I 8 1087 0 13 0 0 0  3437 

want 3 0 786 0 6 8 6  1215 

to 3 0 10 860 3 0 12  3256 

eat 0 0 2 0 19 2 52  938 

Chinese 2 0 0 0 0 120 1  213 

food 19 0 17 0 0 0 0  1506 

lunch 4 0 0 0 0 1 0  459 

…          
 

 

1s
t
w

or
d

 I want to eat Chinese food lunch … Total 

I .0023 

(8/3437) 

.32 0 .0038 

(13/3437) 

0 0 0  1 

want .0025 0 .65 0 .0049 .0066 .0049  1 

to .00092 0 .0031 .26 .00092 0 .0037  1 

eat 0 0 .0021 0 .020 .0021 .055  1 

Chinese .0094 0 0 0 0 .56 .0047  1 

food .013 0 .011 0 0 0 0  1 

lunch .0087 0 0 0 0 .0022 0  1 

…          

 

 



Smoothing – Add-one Smoothing Example (PERP)
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• Add-one smoothed bigram counts:

• Add-one smoothed bigram probabilities:

 I want to eat Chinese food lunch … Total (N+V) 

I 8   9 1087  

1088 

1 14 1 1 1  3437   

5053 

want 3  4 1 787 1 7 9 7  2831 

to 4 1 11 861 4 1 13  4872 

eat 1 1 23 1 20 3 53  2554 

Chinese 3 1 1 1 1 121 2  1829 

food 20 1 18 1 1 1 1  3122 

lunch 5 1 1 1 1 2 1  2075 

 

 I want to eat Chinese food lunch … Total 

I .0018 

(9/5053) 

.22 .0002 .0028 

(14/5053) 

.0002 .0002 .0002  1 

want .0014 .00035 .28 .00035 .0025 .0032 .0025  1 

to .00082 .00021 .0023 .18 .00082 .00021 .0027  1 

eat .00039 .00039 .0012 .00039 .0078 .0012 .021  1 

Chinese .0016 .00055 .00055 .00055 .00055 .066 .0011  1 

food .0064 .00032 .0058 .00032 .00032 .00032 .00032  1 

lunch .0024 .00048 .00048 .00048 .00048 .0022 .00048  1 

 

 



Smoothing – Add-one Smoothing Example (PERP)
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V= 1616

 I want to eat Chinese food lunch … Total (N) 

I 8 1087 0 13 0 0 0  3437 

want 3 0 786 0 6 8 6  1215 

to 3 0 10 860 3 0 12  3256 

eat 0 0 2 0 19 2 52  938 

Chinese 2 0 0 0 0 120 1  213 

food 19 0 17 0 0 0 0  1506 

lunch 4 0 0 0 0 1 0  459 
 

 

unsmoothed bigram counts:
V= 1616 word types

Smoothed P(I eat) 

= (C(I eat) + 1) / (number of bigrams starting with “I” + number of possible bigrams 
starting with “I”)

= (13 + 1) / (3437 + 1616)
= 0.0028



Smoothing – Exercise
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• What is the probability of having the sentence: I am a human?

– P(I am a human) = P(I | <s>) * P(am | I) * P(a | am) * P(human | a)

=      3/3      *      2/4      *    1/2       *        1/2

=        1        *      0.5      *    0.5       *        0.5    =   0.125

• What is the probability of having the sentence: I am human?

– P(I am human) = P(I | <s>) * P(am | I) * P(human | am)

=      3/3      *      2/4      *    0/2

=        1        *      0.5      *     0         =   0



Smoothing – Exercise cont.
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• General Bigram probability: P(X | Y) = C(XY) / C(Y)

– P(I am human) = P(I | <s>) * P(am | I) * P(human | am)

=      3/3      *      2/4      *    0/2

=        1       *       0.5      *     0         =   0

• Bigram probability with Laplace smoothing:

P(X|Y) = C(XY)+1 / C(Y)+V

– P(I am human) = P(I | <s>) * P(am | I) * P(human | am)

=  (3+1) / (3+1) * (2+1) / (4+3) * (0+1) / (2+2)

=    4/4 *  3/7 * 1/4 = 1 * 0.43 * 0.25 = 0.108


