
CS463 – Natural Language Processing

Language Model N-gram

 Word Prediction

 Statistical Inference
• Probability Theory

• Conditional Probability

• Bayes’ Theorem

• Chain Rule of Probability

• Markov Assumption

 N-gram Language Models
• N-grams

• Evaluating Language Models

• Generalization and Zeros

• Smoothing

Word Prediction

2

• The quiz was ------

• In this course, I want to get a good -----

• Can I make a telephone -----

• My friend has a fast -----

• This is too -------

-------الوقت كالسيف إن لم تقطعه •

-------لا إله إلا أنت سبحانك إني كنت من •

Word Prediction

3

• Humans have the ability to predict future words in

an utterance.

• How?

– Domain knowledge

– Syntactic knowledge

– Lexical knowledge

Word Prediction

4

• A useful part of the knowledge is needed to allow Word

Prediction (guessing the next word).

– Start looking at words in context.

– predict next words in a sequence.

• Word Prediction can be captured using simple statistical

techniques.

– In particular, we'll rely on the notion of the probability of a

sequence (e.g., sentence) and the likelihood of words co-

occurring.

• Why word prediction?

– Why would you want to assign a probability to a sentence? or

– Why would you want to predict the next word?

Word Prediction

5

• Many applications employ language models for Word

Prediction.

• Examples:

– Speech recognition

– Handwriting recognition

– Spelling correction

– Machine translation

– Optical character recognition

– Augmentative communication

Word Prediction – Application Example

6

• Word Prediction helps in real world spelling errors:

– Mental confusions (cognitive)

• their/they’re/there

• to/too/two

• weather/whether

– Typos

Phrases/sentences with errors Prediction

lave for have lave: lave, leave or love,

have: having or shave

They are leaving in about fifteen minuets to go to her horse. horse: house, minuets: minutes

The study was conducted mainly be John Black. be: by

The design an construction of the system will take … an: and

Hopefully, all with continue smoothly in my absence. with: will

I need to notified the bank of…. notified: notify

He is trying to fine out. fine: find

Word Prediction – Application Example

7

• Word Prediction solution to real world spelling errors:

1. Collect a set of common pairs of confusions;

2. Whenever a member of this set is encountered, compute
the probability of the sentence in which it appears;

3. Substitute the other possibilities and compute the
probability of the resulting sentence;

4. Choose the higher one.

Statistical Inference

8

• Statistical NLP aims to do statistical inference for the field

of NL.

• Statistical inference consists of taking some data

(generated in accordance with some unknown probability

distribution) and then making some inference about this

distribution.

• An example of statistical inference is the task of language

modeling (ex. how to predict the next word given the

previous words)

• In order to do this, we need a model of the language.

• Probability theory helps us finding such model

Probability Theory

9

• How likely it is that an A Event (something) will happen.

• Sample space Ω is listing of all possible outcome of an

experiment.

• Event A is a subset of Ω

• Probability function (or distribution)

• Prior (unconditional) probability is the probability

before we consider any additional knowledge

 0,1Ω:P 

)(AP

Conditional Probability

10

• Sometimes we have partial knowledge about the

outcome of an experiment.

• In such cases Conditional Probability applies.

– Suppose we know that event B is true

– The probability that event A is true given the knowledge

about B is expressed by

)|(BAP

Conditional Probability

11

• Conditionals

• Rearranging

• And also

)(

)^(
)|(

BP

BAP
BAP 

)()|()^(BPBAPBAP 

)()|()^(APABPBAP 

(^) (^) (|) ()P A B P B A P B A P A 

Conditional Probability

12

• Joint probability of A and B

)()|(

)()|(),(

APABP

BPBAPBAP





Bayes’ Theorem

13

• Bayes’ Theorem lets us swap the order of dependence

between events.

• From Conditional Probability, we saw that

• Bayes’ Theorem:

P(B)

B)P(A,
B)|P(A 

P(B)

A)P(A)|P(B
B)|P(A 

Bayes’ Theorem

14

• We know …

• So, rearranging things …

)()|()(

)()|()(

APABPBAP

and

BPBAPBAP





)(

)()|(
)|(

)()|()()|(

BP

APABP
BAP

APABPBPBAP





Bayes’ Theorem

Bayes’ Theorem - Example

15

• S:stiff neck, M: meningitis

• P(S|M) =0.5 P(M) = 1/50,000 P(S)=1/20

• Someone has stiff neck, should he/she worry?

• Estimate the probability, applying Bayes’ Theorem:

0002.0
20/1

000,50/15.0

)(

)()|(
)|(







SP

MPMSP
SMP

Chain Rule of Probability

16

• The probability of a sequence can be viewed as the

probability of a conjunctive event.

• For example, the probability of “the clever student” is:

()P the clever student 

Chain Rule of Probability - Example

17

• Based on Conditional Probability:

• Estimating the probability of the conjunctive event: “the student studies”

– “the student”

– “the student studies”

)()|()(APABPBAP 

)(

)(
)|(

BP

BAP
BAP




)()|()(

)()|()(

APABPBAP

and

BPBAPBAP





() (|) ()P The student P student the P the 

()

() (|) (|)

P The student studies

P The P student The P studies The student

  



Chain Rule of Probability

18

• The probability of a word sequence is the probability of a conjunctive event.

• The chain rule shows the link between computing the joint probability of a

sequence and computing the conditional probability of a word given

previous words.

• Unfortunately, Chain Rule doesn’t seem to be really helpful. Why?

– We don’t know how to compute the exact probability of a word given a long

sequence of preceding words.

– Language is creative and any particular context might have never occurred before!












n

k

k

k

n

n

n

wwP

wwPwwPwwPwPwP

1

1

1

1

1

2

131211

)|(

)|()...|()|()()(

Markov Assumption

19

• Markov models are the class of probabilistic models
that assume that we can predict the probability of some
future unit without looking too far into the past.

• Thus, the Order of a Markov model is the length of
immediate prior context.

• The assumption that the probability of a word depends

only on the previous word is called a Markov

assumption.

N-gram Language Models

20

• Language Models (LMs) are models that assign
probabilities to sequences of words.

• An n-gram is a sequence of words:

– A 2-gram (or bigram) is a two-word sequence of words

• like “please turn”, “turn your”, or ”your homework”.

– A 3-gram (or trigram) is a three-word sequence of words

• like “please turn your”, or “turn your homework”.

• We use n-gram models to estimate the probability of the last

word of an n-gram given the previous words, and also to assign

probabilities to entire sequences (probability distribution).

N-grams

21

• A simple N-gram model computes P(w | h), the

probability of a word w given some history h.

– It uses the previous N-1 words to predict the next one:

P(wn | wn -1)

• Dealing with P(<word> | <some prefix>)

• unigrams: P(student)

• bigrams: P(student | honest)

• trigrams: P(student | clever honest)

• quadrigrams: P(student | the clever honest)

N-grams

22

• Given a word sequence: w1 w2 w3 ... wn

• Chain rule

– p(w1 w2) = p(w1) p(w2|w1)

– p(w1 w2 w3) = p(w1) p(w2|w1) p(w3|w1w2)

– p(w1 w2 w3...wn) = p(w1) p(w2|w1) p(w3|w1w2) p(w4|w1w2w3) ... p(wn|w1...wn-1)

• Note:

– It’s not easy to collect (meaningful) statistics on p(wn|wn-1wn-2...w1) for all possible
word sequences

• Bigram approximation

– just look at the previous word only (not all the proceedings words)

– Markov Assumption: finite length history

– 1st order Markov Model

– p(w1 w2 w3..wn) = p(w1) p(w2|w1) p(w3|w1w2) ...p(wn|w1...wn-3wn-2wn-1)

– p(w1 w2 w3..wn)  p(w1) p(w2|w1) p(w3|w2)…p(wn|wn-1)

• Note:

– p(wn|wn-1) is a lot easier to estimate well than p(wn|w1…wn-1)

N-grams

23

• Given a word sequence: w1 w2 w3 ... wn

• Chain rule

– p(w1 w2) = p(w1) p(w2|w1)

– p(w1 w2 w3) = p(w1) p(w2|w1) p(w3|w1w2)

– p(w1 w2 w3...wn) = p(w1) p(w2|w1) p(w3|w1w2) p(w4|w1w2w3) ... p(wn|w1...wn-1)

• Note:

– It’s not easy to collect (meaningful) statistics on p(wn|wn-1wn-2...w1) for all possible
word sequences

• Trigram approximation

– just look at the previous two words only (not all the proceedings words)

– 2nd order Markov Model

– p(w1 w2 w3 w4...wn) = p(w1) p(w2|w1) p(w3|w1w2) p(w4|w1w2w3)...p(wn|w1...wn-3wn-2wn-1)

– p(w1 w2 w3...wn)  p(w1) p(w2|w1) p(w3|w1w2)p(w4|w2w3)...p(wn |wn-2 wn-1)

• Note:

– p(wn|wn-2wn-1) is a lot easier to estimate well than p(wn|w1…wn-1) but harder than
p(wn|wn-1)

N-grams

24

• Based on Markov assumption, the general equation for n-gram

approximation to the conditional probability of the next word in a

sequence is

• So for each component in the product replace each with its

approximation (assuming a prefix (Previous words) of N)

• For a bigram grammar

– P(sentence) can be approximated by multiplying all the bigram

probabilities in the sequence

• P(I want to eat Chinese food) = P(I | <start>) P(want | I) P(to | want)

P(eat | to) P(Chinese | eat) P(food | Chinese) P(<end> | food)

N-grams

25

• How do we estimate the bigram or n-gram probabilities?

• To estimate probabilities, we use a method called Maximum

Likelihood Estimation or MLE.

– Counting from corpus and normalizing the counts so that they

lie between 0 and 1

)(

)(
)|(

1

1
1




 

n

nn
nn

wC

wwC
wwP

)(

)(
)|(

1
1

1
11

1 





 
n

Nn

n
n

Nnn
Nnn

wC

wwC
wwP

Bigram:

Ngram:

N-grams

26

N-grams - BErkeley Resturant Project (speech) Example

27

• BERP bigram counts:

I Want To Eat Chinese Food lunch

I 8 1087 0 13 0 0 0

Want 3 0 786 0 6 8 6

To 3 0 10 860 3 0 12

Eat 0 0 2 0 19 2 52

Chinese 2 0 0 0 0 120 1

Food 19 0 17 0 0 0 0

Lunch 4 0 0 0 0 1 0

N-grams - BErkeley Resturant Project (speech) Example

28

• Normalization: divide each row's counts by appropriate unigram

counts

• Computing the probability of I I

– P = C(I | I) / C(all I)

– P = 8 / 3437 = .0023

• A bigram grammar is an NxN matrix of probabilities, where N is the

vocabulary size

I Want To Eat Chinese Food Lunch

3437 1215 3256 938 213 1506 459

N-grams - BErkeley Resturant Project (speech) Example

29

N-grams - BErkeley Resturant Project (speech) Example

30

• A Bigram

Grammar

Fragment

from BERP

N-grams - BErkeley Resturant Project (speech) Example

31

• P(I want to eat British food) = P(I|<start>) P(want|I) P(to|want)

P(eat|to) P(British|eat) P(food|British) =

.25*.32*.65*.26*.001*.60 = 0.0000081

• P(I want to eat Chinese food) = P(I|<start>) P(want|I) P(to|want)

P(eat|to) P(Chinese|eat) P(food|Chinese) =

.25*.32*.65*.26*.02*.56 = 0.00015

• What can we infer from these statistics?

• Probabilities seem to capture “syntactic” facts and “world

knowledge”

– eat is often followed by a NP

– British food is not too popular

N-grams – log probability

32

• Check the following probabilities:

– P(I | I) = .0023 I I I I want

– P(I | want) = .0025 I want I want

– P(I | food) = .013 the kind of food I want is ...

• Since probabilities are (by definition) less than or equal to 1, the

more probabilities we multiply together, the smaller the product

becomes.

– Multiplying enough n-grams together would result in numerical

underflow.

– To avoid underflow convert the probabilities to logs and then do

additions.

– To get the real probability (if you need it) go back to the antilog.

Evaluating Language Models

33

• Probabilities come from a training corpus, which is used

to design the model.

– narrow corpus: probabilities don't generalize

– general corpus: probabilities don't reflect task or domain

• A separate test corpus is used to evaluate the model,

typically using standard metrics

– held out test set

– cross validation

– evaluation differences should be statistically significant

• Try preplexity metric (the inverse probability) to evaluate each model.

• The lower the preplexity the better the language model.

34

• Using Shannon visualization technique - choose N-Grams

according to their probabilities and string them together to

generate random sentences from different n-gram models.

– Unigrams - Choose a random value between 0 and 1 and print the

word whose interval includes this chosen value. We continue

choosing random numbers and generating words until we randomly

generate the sentence-final token </s>.

– Bigrams: Start with generating bigrams that start with <s> and has w

as the second word. We next chose a random bigram starting with w,

and so on.

• From BERP:

<s>I I want want to to eat eat Chinese Chinese food food</s>

• Make sure that the training and testing datasets share the same

genre and dialect.

Evaluating Language Models

Generalization and Zeros

35

• A small number of events occur with high frequency

– You can collect reliable statistics on these events with

relatively small samples

• A large number of events occur with small frequency

– You might have to wait a long time to gather statistics on the

low frequency events

– Some zeroes are really zeroes

• Meaning that they represent events that can’t or shouldn’t occur

– On the other hand, some zeroes aren’t really zeroes

• They represent low frequency events that simply didn’t occur in the

corpus

Generalization and Zeros

36

• Problem:

– Let’s assume we’re using N-grams.

– How can we assign a probability to a sequence where one of
the component n-grams has a value of zero?

• i.e. words that could be in our vocabulary, but appear in a test set in an unseen

context (for example they appear after a word they never appeared after in

training)

• Solution - Assume all the words are known and have

been seen.

– Go to a lower order n-gram

– Back off from bigrams to unigrams

– Replace the zero with something else

Smoothing

37

• The simplest way to do smoothing is to add one to all the bigram

counts, before we normalize them into probabilities.

– All the counts that used to be zero will now have a count of 1, the counts of 1 will

be 2, and so on.

– Justification: They’re just events you haven’t seen yet. If you had seen them you

would only have seen them once. so make the count equal to 1.

• This algorithm is called Laplace smoothing (or add-one smoothing).

– There are other smoothing algorithms too: Add-k smoothing, Backoff smoothing

and Kneser-Ney smoothing, but we focus on Laplace smoothing.

Unigram:

Bigram:

Smoothing – Add-one Smoothing Example (PERP)

38

• Unsmoothed bigram counts:

• Unsmoothed bigram probabilities:

2nd word

 I want to eat Chinese food lunch … Total (N)

I 8 1087 0 13 0 0 0 3437

want 3 0 786 0 6 8 6 1215

to 3 0 10 860 3 0 12 3256

eat 0 0 2 0 19 2 52 938

Chinese 2 0 0 0 0 120 1 213

food 19 0 17 0 0 0 0 1506

lunch 4 0 0 0 0 1 0 459

…

1s
t
w

or
d

 I want to eat Chinese food lunch … Total

I .0023

(8/3437)

.32 0 .0038

(13/3437)

0 0 0 1

want .0025 0 .65 0 .0049 .0066 .0049 1

to .00092 0 .0031 .26 .00092 0 .0037 1

eat 0 0 .0021 0 .020 .0021 .055 1

Chinese .0094 0 0 0 0 .56 .0047 1

food .013 0 .011 0 0 0 0 1

lunch .0087 0 0 0 0 .0022 0 1

…

Smoothing – Add-one Smoothing Example (PERP)

39

• Add-one smoothed bigram counts:

• Add-one smoothed bigram probabilities:

 I want to eat Chinese food lunch … Total (N+V)

I 8 9 1087

1088

1 14 1 1 1 3437

5053

want 3 4 1 787 1 7 9 7 2831

to 4 1 11 861 4 1 13 4872

eat 1 1 23 1 20 3 53 2554

Chinese 3 1 1 1 1 121 2 1829

food 20 1 18 1 1 1 1 3122

lunch 5 1 1 1 1 2 1 2075

 I want to eat Chinese food lunch … Total

I .0018

(9/5053)

.22 .0002 .0028

(14/5053)

.0002 .0002 .0002 1

want .0014 .00035 .28 .00035 .0025 .0032 .0025 1

to .00082 .00021 .0023 .18 .00082 .00021 .0027 1

eat .00039 .00039 .0012 .00039 .0078 .0012 .021 1

Chinese .0016 .00055 .00055 .00055 .00055 .066 .0011 1

food .0064 .00032 .0058 .00032 .00032 .00032 .00032 1

lunch .0024 .00048 .00048 .00048 .00048 .0022 .00048 1

Smoothing – Add-one Smoothing Example (PERP)

40

V= 1616

 I want to eat Chinese food lunch … Total (N)

I 8 1087 0 13 0 0 0 3437

want 3 0 786 0 6 8 6 1215

to 3 0 10 860 3 0 12 3256

eat 0 0 2 0 19 2 52 938

Chinese 2 0 0 0 0 120 1 213

food 19 0 17 0 0 0 0 1506

lunch 4 0 0 0 0 1 0 459

unsmoothed bigram counts:
V= 1616 word types

Smoothed P(I eat)

= (C(I eat) + 1) / (number of bigrams starting with “I” + number of possible bigrams
starting with “I”)

= (13 + 1) / (3437 + 1616)
= 0.0028

Smoothing – Exercise

41

• What is the probability of having the sentence: I am a human?

– P(I am a human) = P(I | <s>) * P(am | I) * P(a | am) * P(human | a)

= 3/3 * 2/4 * 1/2 * 1/2

= 1 * 0.5 * 0.5 * 0.5 = 0.125

• What is the probability of having the sentence: I am human?

– P(I am human) = P(I | <s>) * P(am | I) * P(human | am)

= 3/3 * 2/4 * 0/2

= 1 * 0.5 * 0 = 0

Smoothing – Exercise cont.

42

• General Bigram probability: P(X | Y) = C(XY) / C(Y)

– P(I am human) = P(I | <s>) * P(am | I) * P(human | am)

= 3/3 * 2/4 * 0/2

= 1 * 0.5 * 0 = 0

• Bigram probability with Laplace smoothing:

P(X|Y) = C(XY)+1 / C(Y)+V

– P(I am human) = P(I | <s>) * P(am | I) * P(human | am)

= (3+1) / (3+1) * (2+1) / (4+3) * (0+1) / (2+2)

= 4/4 * 3/7 * 1/4 = 1 * 0.43 * 0.25 = 0.108

