CS463 — Natural Language Processing

Language Model N-gram

> Word Prediction

> Statistical Inference

Probability Theory
Conditional Probability
Bayes’ Theorem

Chain Rule of Probability
Markov Assumption

» N-gram Language Models
. N-grams
Evaluating Language Models
Generalization and Zeros
Smoothing

Word Prediction

 The quiz was ------

* In this course, | want to get a good -----
 Can | make a telephone -----

* My friend has a fast -----

* This is too -------
_______ aadai ol) CandlS) o

_______ O i€) @lilan el WAl Y e

Word Prediction

« Humans have the ability to predict future words in
an utterance.

* How?
—Domain knowledge

— Syntactic knowledge
— Lexical knowledge

Word Prediction

» A useful part of the knowledge is needed to allow Word
Prediction (guessing the next word).

— Start looking at words in context.
— predict next words In a sequence.

« Word Prediction can be captured using simple statistical
techniques.

— In particular, we'll rely on the notion of the probability of a
sequence (e.g., sentence) and the likelihood of words co-
occurring.

« Why word prediction?
— Why would you want to assign a probability to a sentence? or
— Why would you want to predict the next word?

Word Prediction

« Many applications employ language models for Word
Prediction.

« Examples:
— Speech recognition
— Handwriting recognition
— Spelling correction
— Machine translation
— Optical character recognition
— Augmentative communication

Word Prediction — AQEIication ExamEIe

« Word Prediction helps in real world spelling errors:

— Mental confusions (cognitive)
* their/they’re/there
* to/too/two
« weather/whether

— Typos
Phrases/sentences with errors

lave for have

They are leaving in about fifteen minuets to go to her horse.
The study was conducted mainly be John Black.

The design an construction of the system will take ...
Hopefully, all with continue smoothly in my absence.

I need to notified the bank of....

He is trying to fine out.

Prediction

lave: lave, leave or love,
have: having or shave

horse: house, minuets: minutes
be: by

an: and

with: will

notified: notify

fine: find

Word Prediction — AQEIication ExamEIe

« Word Prediction solution to real world spelling errors:
1. Collect a set of common pairs of confusions;

2. Whenever a member of this set is encountered, compute
the probability of the sentence in which it appears;

3. Substitute the other possibilities and compute the
probability of the resulting sentence;

4. Choose the higher one.

Statistical Inference

 Statistical NLP aims to do statistical inference for the field
of NL.

» Statistical inference consists of taking some data
(generated in accordance with some unknown probability
distribution) and then making some inference about this
distribution.

» An example of statistical inference is the task of language
modeling (ex. how to predict the next word given the
previous words)

* In order to do this, we need a model of the language.
* Probability theory helps us finding such model

Probabilitz Theorx

« How likely it is that an A Event (something) will happen.

» Sample space Q is listing of all possible outcome of an
experiment.

Event A 1s a subset of Q2
Probability function (or distribution)

P:Q—[0,1]

Prior (unconditional) probability is the probability
before we consider any additional knowledge

P(A)

Conditional Probabilitx

« Sometimes we have partial knowledge about the
outcome of an experiment.
* In such cases Conditional Probability applies.

— Suppose we know that event B is true

— The probability that event A is true given the knowledge
about B is expressed by

P(A|B)

10

Conditional Probabilitx

« Conditionals
P(A"B)
P(B)

P(A|B)=

 Rearranging

P(A”"B)=P(A|B)P(B)

* And also
P(A*B)=P(B| A)P(A)
P(AMB)=P(B *"A)=P(B |A)P(A)

1

Conditional Probabilitx
» Joint probability of A and B

P(A,B)=P(A|B)P(B)
=P(B| A)P(A)

Baxes’ Theorem

- Bayes’ Theorem lets us swap the order of dependence
between events.

» From Conditional Probability, we saw that

P(A,B)
P(B)

P(A|B)=

- Bayes' Theorem:

P(BIA)P(A)

P(A|B)= P(B)

13

Baxes’ Theorem

« We know ...
P(AAB)=P(A|B)P(B)
and
P(AAB)=P(B|A)P(A)

* S0, rearranging things ...

P(A|B)P(B)=P(B|A)P(A)

P(BIA)P(A)

P(B) % Bayes’ Theorem]

P(A|B) =

Bayes’ Theorem - Example

o S:stiff neck, M: meningitis

* P(SM) =0.5 P(M) =1/50,000 P(S)=1/20

» Someone has stiff neck, should he/she worry?
 Estimate the probability, applying Bayes’ Theorem:

oM |5~ PEIMP(M)
P(S)
_ 0.5%x1/50,000 _ 0.0002

1/20

15

Chain Rule of Probabilitx

 The probability of a sequence can be viewed as the
probability of a conjunctive event.

 For example, the probability of “the clever student” is:

P (the Aclever astudent)

16

Chain Rule of Probabilitx : ExamEIe

 Based on Conditional Probability:

P(AAB)=P(A| B)P(B)
P(AAB) o

P(B) P(AAB)=P(B| A)P(A)

P(A|B) =

P(AAB)=P(B|A)P(A)

- Estimating the probability of the conjunctive event: “the student studies”
— “the student”

P (The Astudent) = P (student |the)P (the)

— “the student studies”

P (The Astudent Astudies) =
P (The)P (student |The)P (studies |The A student)

17

Chain Rule of Probabilitx

« The probability of a word sequence is the probability of a conjunctive event.

P(w) = P(w;)P(W, | w;)P(w, | wy)...P(w, [w;'™)

= H P(Wk | Wlk_l)
k=1

 The chain rule shows the link between computing the joint probability of a
sequence and computing the conditional probability of a word given
previous words.

« Unfortunately, Chain Rule doesn’t seem to be really helpful. Why?

— We don’t know how to compute the exact probability of a word given a long
sequence of preceding words.

— Language is creative and any particular context might have never occurred before!

18

Markov AssumEtion

- Markov models are the class of probabilistic models
that assume that we can predict the probability of some
future unit without looking too far into the past.

 Thus, the Order of a Markov model is the length of
Immediate prior context.

 The assumption that the probability of a word depends
only on the previous word is called a Markov
assumption.

19

N-gram Language Models

» Language Models (LMs) are models that assign
probabilities to sequences of words.

» An n-gram is a sequence of words:

— A 2-gram (or bigram) is a two-word sequence of words
* like “please turn”, “turn your”, or ’your homework”.

— A 3-gram (or trigram) is a three-word sequence of words
* like “please turn your”, or “turn your homework”.

« We use n-gram models to estimate the probability of the last

word of an n-gram given the previous words, and also to assign
probabilities to entire sequences (probability distribution).

20

N-grams

* A simple N-gram model computes P(w | h), the
probability of a word W given some history h.
— It uses the previous N-1 words to predict the next one:
P(Wn | Wy -1)
 Dealing with P(<word> | <some prefix>)
e unigrams: P(student)
* bigrams: P(student | honest)

« trigrams: P(student | clever honest)
* quadrigrams: P(student | the clever honest)

21

N-grams

- Given a word sequence: W; W, W ... W,

Chain rule

— p(wy Wy) = p(wy) p(w,|w,)

— P(wy W, W3) = p(wy) p(W,|Wy) P(Wswyw,)

— P(Wy W, Wy Wp) = P(Wy) P(W,[Wy) P(W35IW;W,) PIW,IW;WoW3) ... p(W, Wy W)
Note:

— It’s not easy to collect (meaningful) statistics on p(w,|w, W, _,...w,) for all possible
word sequences

Bigram approximation

— just look at the previous word only (not all the proceedings words)
— Markov Assumption: finite length history

— 15t order Markov Model

— P(Wy W, W3 W) = p(Wy) P(W,{Wy) P(W3IWiW5) .. p(Wp|Wy... Wy g Wy oW)
= P(Wy Wy W3..Wy) = p(Wy) P(WoWy) P(WslWy). .. p(WIWp1)

Note:

— p(w,|w,) is a lot easier to estimate well than p(w,|w;,...w, ;)

22

N-grams

- Given a word sequence: W; W, W ... W,

Chain rule

— p(wy Wy) = p(wy) p(w,|w,)

— P(wy W, W3) = p(wy) p(W,|Wy) P(Wswyw,)

— P(Wy W, Wy Wp) = P(Wy) P(W,[Wy) P(W35IW;W,) PIW,IW;WoW3) ... p(W, Wy W)
Note:

— It’s not easy to collect (meaningful) statistics on p(w,|w, W, _,...w,) for all possible
word sequences

Trigram approximation

— just look at the previous two words only (not all the proceedings words)

— 2" order Markov Model

— P(Wy Wy Wy Wy...Wp) = P(Wy) P(Wo[W1) P(W3lW;Wo) DWW WoWs)... p(W Wy Wiy gWi sWp 1)
— P(Wy W,y W3 W) = P(Wy) P(W,W;) PW3W,W,)P(WaWoWs3)...p(W, (W o Wi 1)

Note:

— p(w,|w,,w,,) is a lot easier to estimate well than p(w,|w,...w,_,) but harder than
p(Wnlwn-l)

23

N-grams

 Based on Markov assumption, the general equation for n-gram

approximation to the conditional probability of the next word in a
sequence Is

P{“'ra|‘*'ji!_1} ~ P(“‘ﬂ|”'§:;1v+l)

 So for each component in the product replace each with its
approximation (assuming a prefix (Previous words) of N)
 For a bigram grammar
— P(sentence) can be approximated by multiplying all the bigram
probabilities in the sequence

 P(I want to eat Chinese food) = P(l | <start>) P(want | I) P(to | want)
P(eat | to) P(Chinese | eat) P(food | Chinese) P(<end> | food)

24

N-grams

« How do we estimate the bigram or n-gram probabilities?

 To estimate probabilities, we use a method called Maximum
Likelihood Estimation or MLE.

— Counting from corpus and normalizing the counts so that they
lie between O and 1

C(W,_1W
Bigram: P(w, [w,_3) = ((Z(cvl ;)
n-1
Ngram: p(w, |w™ ., _ C(wp- N+1W)

C(Wi N

25

N-grams

Dan Jurafsky

N
i An example
d ,o"

N

<s>|am Sam </s>

« C W, W,
P(w, |w,_, (W) <s>Sam | am </s>
o W'-1) <s>|do not like green eggs andmex </s>
P(I|<s>) =3 =.67 P(sam|<s>)=1=.33 P(am|I)=%=.67
P(</s>|Sam)——-%:0.5 P(Sam|am) = %=.5 P(do|I) =%:33

26

N-grams - BErkeley Resturant Project (speech) Example

- BERP bigram counts:

I Want |To |Eat |Chinese |Food |lunch
I 8| 1087 0| 13 0 0 0
Want 3 0| 786 0 6 8 6
To 3 0| 10| 860 0 12
Eat 0 0 2 0 19 2 52
Chinese 2 0 0 0 0] 120 1
Food 19 0| 17 0 0 0 0
Lunch 4 0 0 0 0 1 0

N-grams - BErkeley Resturant Project (speech) Example

« Normalization: divide each row's counts by appropriate unigram

counts

I

Want

To

Eat

Chinese

Food

Lunch

3437

1215

3256

938

213

1506

459

« Computing the probability of I |

—p=C(|1)/C@ll)
~ P =8/3437=.0023

A bigram grammar is an NxN matrix of probabilities, where N is the

vocabulary size

28

N-grams - BErkeley Resturant Project (speech) Example

W1

Wn
| I] wan| to eat | Chinese| food| lunc
1 8 1087 0 13 0 0 0
want 3 0 T86 0 6 g 6
to 3 0 10 860 3 0 12
eat 0 0 2 0 19 2 52
Chinese 2 0 Q0 0 1] 120 1
food 19| 0 17 0 0 0 0
lunch 4 0 0 0 0 1 0

Figure 6.4 Bigram counts for seven of the words (out of 1616 total word

types) in the Berkeley Restaurant Project corpus of = 10,000 sentences.

| 3437
want 1215
to 3256
eat 938
Chinese 213
food 1506
lunch 459

| |1 | want| to | eat | Chinese| food | lunch
| 0023 32 0 00381 0] 0
want 0025 0 65 0 0049 0066 0049
to 00092 0 0031 .26 00092 0 037
eat 0 0 o210 020 0021 055
Chinese | 0094 | 0 0 0 0 56 L0047
food D13 0 11 0 0 0]
lunch D087 0 0 \] 0 00221 0
Figure 6.5 Bigram probabilities for seven of the words (out of 1616 total
word Lypes) in the Berkeley Restaurant Project corpus of 210,000 sentences.

| bigram probabities |
sparse matrix

zeros probabilities unusable

(we'll need to do smoothing)

29

N-grams - BErkeley Resturant Project (speech) Example

« A Bigram
Grammar
Fragment

from BERP

Eat on .16 Eat Thai .03

Eat some .06 Eat breakfast | .03

Eat lunch .06 Eat in .02

Eat dinner | .05 Eat Chinese .02

Eat at .04 Eat Mexican .02

Eat a .04 Eat tomorrow | .01

Eat Indian | .04 Eat dessert .007
Eat today .03 Eat British .001
<start> | 25 Want some .04
<start> I'd .06 Want Thai .01
<start> Tell .04 To eat 26
<start> I'm .02 To have 14
| want 32 To spend .09
| would .29 To be 02
| don’t .08 British food .60
| have .04 British restaurant | .15
Want to .65 British cuisine .01
Want a .05 British lunch .01

30

N-grams - BErkeley Resturant Project (speech) Example

 P(I want to eat British food) = P(l|<start>) P(want|l) P(to|want)
P(eat|to) P(British|eat) P(food|British) =
.25*.32*.65*.26*.001*.60 = 0.0000081

« P(I want to eat Chinese food) = P(l|<start>) P(want|l) P(to|want)
P(eat|to) P(Chinese|eat) P(food|Chinese) =
25%*.32*.65*.26*.02*.56 = 0.00015

« What can we infer from these statistics?

 Probabilities seem to capture “syntactic” facts and “world
knowledge”
— eat Is often followed by a NP
— British food is not too popular

31

N-grams — Iog Qrobabilitx

 Check the following probabilities:
—P(I'|1)=.0023 | 111 want
—P(I | want) =.0025 | want | want
—P(I'| food) =.013 the kind of food | want is ...

« Since probabilities are (by definition) less than or equal to 1, the
more probabilities we multiply together, the smaller the product
becomes.

— Multiplying enough n-grams together would result in numerical
underflow.

— To avoid underflow convert the probabilities to logs and then do
additions.

— To get the real probability (if you need it) go back to the antilog.

p1 X p2 X p3 X pa = exp(log p1 +log p2 +1og p3 +1og py)

32

Evaluating Language Models

* Probabilities come from a training corpus, which is used
to design the model.
— narrow corpus: probabilities don't generalize
—general corpus: probabilities don't reflect task or domain

* A separate test corpus iIs used to evaluate the model,
typically using standard metrics
—held out test set
—cross validation

—evaluation differences should be statistically significant

 Try preplexity metric (the inverse probability) to evaluate each model.
» The lower the preplexity the better the language model.

33

Evaluating Language Models

 Using Shannon visualization technique - choose N-Grams
according to their probabilities and string them together to
generate random sentences from different n-gram models.

— Unigrams - Choose a random value between 0 and 1 and print the
word whose interval includes this chosen value. We continue
choosing random numbers and generating words until we randomly
generate the sentence-final token </s>.

— Bigrams: Start with generating bigrams that start with <s>and has w
as the second word. We next chose a random bigram starting with w,
and so on.

* From BERP:
<s>| [lwant wantto toeat eatChinese Chinese food food</s>

« Make sure that the training and testing datasets share the same
genre and dialect.

34

Generalization and Zeros

A small number of events occur with high frequency

—You can collect reliable statistics on these events with
relatively small samples

* A large number of events occur with small frequency

—You might have to wait a long time to gather statistics on the
low frequency events

— Some zeroes are really zeroes
« Meaning that they represent events that can’t or shouldn’t occur

—On the other hand, some zeroes aren’t really zeroes

» They represent low frequency events that simply didn’t occur in the
corpus

35

Generalization and Zeros

* Problem:
— Let’s assume we’re using N-grams.

—How can we assign a probability to a sequence where one of
the component n-grams has a value of zero?

* i.e. words that could be in our vocabulary, but appear in a test set in an unseen
context (for example they appear after a word they never appeared after in
training)

» Solution - Assume all the words are known and have
been seen.
— Go to a lower order n-gram
— Back off from bigrams to unigrams
— Replace the zero with something else

36

Smoothing

« The simplest way to do smoothing is to add one to all the bigram
counts, before we normalize them into probabilities.

— All the counts that used to be zero will now have a count of 1, the counts of 1 will
be 2, and so on.

— Justification: They’re just events you haven’t seen yet. If you had seen them you
would only have seen them once. so make the count equal to 1.

 This algorithm is called Laplace smoothing (or add-one smoothing).

— There are other smoothing algorithms too: Add-k smoothing, Backoff smoothing
and Kneser-Ney smoothing, but we focus on Laplace smoothing.

_ . | ci ci+ 1
Unigram: P(wi) = N &aplace(wf) — ﬁ;—I—V

_ . C{'H_.I”_] wn} p wlw _ C{:Hln—] w.l'i::l + 1
Blgram P{'H_.I” |H.l”_]) — C(w”_l} Lﬂp]ﬂﬂﬁ{ J'i| n—1 ;I C{wﬂ'—l ::I 4 V

37

Smoothing — Add-one Smoothing Example (PERP)

 Unsmoothed bigram counts:

1st word
A

\

2rd word

— — —

I want to eat Chinese | food lunch Total (N)
I 8 1087 0 13 0 3437
want 3 0 786 0 8 6 1215
to 3 0 10 860 0 12 3256
eat 0 0 2 0 19 2 b2 938
Chinese 2 0 0 0 120 1 213
food 19 0 17 0 0 0 0 1506
lunch 4 0 0 0 0 1 0 459

 Unsmoothed bigram probabilities:

I want to eat Chinese food lunch Total
I .0023 .32 0 .0038 0 0 0 1

(8/3437) (13/3437)
want .0025 0 .65 0 .0049 .0066 .0049 1
to .00092 0 .0031 .26 .00092 0 .0037 1
eat 0 0 .0021 0 .020 .0021 .055 1
Chinese | .0094 0 0 0 56 0047 1
food 013 0 o11 0 0 0 1
lunch .0087 0] 0 0 .0022 0 1

38

I want to eat Chinese | food lunch Total (N+V)
I 8 9 1087 1 14 1 1 1 3437
1088 5053
want 3 4 1 787 1 7 9 7 2831
to 4 1 11 861 4 1 13 4872
eat 1 1 23 1 20 3 53 2554
Chinese 3 1 1 1 1 121 2 1829
food 20 1 18 1 1 1 1 3122
lunch 5 1 1 1 1 2 1 2075
- Add-one smoothed bigram probabilities:
I want to eat Chinese | food lunch Total
I .0018 .22 .0002 0028 0002 .0002 .0002 1
(9/5053) (14/5053)
want .0014 00035 | .28 00035 0025 0032 0025 1
to .00082 .00021 0023 18 00082 | .00021 0027 1
eat .00039 .00039 | .0012 00039 0078 0012 021 1
Chinese | .0016 00055 |.00055 |.00055 00055 | .066 0011 1
food 0064 .00032 |.0058 00032 00032 |.00032 |.00032 1
lunch .0024 .00048 .00048 .00048 .00048 .0022 .00048 1

Smoothing — Add-one Smoothing Example (PERP)

 Add-one smoothed bigram counts:

39

Smoothing — Add-one Smoothing Example (PERP)

unsmoothed bigram counts:

V= 1616 word types

e N
Yl N

I want | to eat Chinese | food |lunch |.. | Total (N)
I 8| 1087 0) 13 0 0) 0) 3437
want 3 o) 786 0 6 8 6 1215
to 3 o) 10 860 3 0) 12 3256
eat 0) 0) 2 0 19 2 52 938
Chinese 2 0) 0) 0 0 120 1 213
food 19 0) 17 0 0 0) 0) 1506
lunch 4 0) 0) 0 0 1 0) 459

>V= 1616

Smoothed P(I eat)

= (C(T eat) + 1) / (number of bigrams starting with "I" + number of possible bigrams
starting with "I")

= (13 +1) /(3437 + 1616)
= 0.0028

40

Smoothing — Exercise

<s>|am a human </s>

<s> | am not a machine </s>

<s> || live in KSA </s>

« What is the probability of having the sentence: | am a human?
— P(I am a human) = P(l | <s>) * P(am | I) * P(a | am) * P(human | a)
= 33 * 24 * 12 * 1/2
- 1 * 05 * 05 * 05 = 0.125

« What is the probability of having the sentence: | am human?
— P(I am human) = P(l | <s>) * P(am | I) * P(human | am)
= 33 * 2[4 * 02
= 1 * 05 * 0 =0

41

Smoothing — Exercise cont.

<s>|am a human </s>

<s> | am not a machine </s>

<s> || live in KSA </s>

 General Bigram probability: P(X | Y) = C(XY) / C(Y)
— P(I am human) = P(l | <s>) * P(am | I) * P(human | am)
= 33 * 214 * 02
= 1 * 05 * O =0
 Bigram probability with Laplace smoothing:
P(X[Y) = C(XY)+1/ C(Y)+V
— P(I am human) = P(l | <s>) * P(am | I) * P(human | am)
= (3+1)/(3+1) * (2+1) / (4+3) * (0+1) / (2+2)
= 4/4* 3/7*1/4=1*0.43*0.25=0.108

42

